Improved Learning for Stochastic Timed Models by State-Merging Algorithms
نویسندگان
چکیده
The construction of faithful system models for quantitative analysis, e.g., performance evaluation, is challenging due to the inherent systems’ complexity and unknown operating conditions. To overcome such difficulties, we are interested in the automated construction of system models by learning from actual execution traces. We focus on the timing aspects of systems that are assumed to be of stochastic nature. In this context, we study a state-merging procedure for learning stochastic timed models and we propose several enhancements at the level of the learned model structure and the underlying algorithms. The results obtained on different examples show a significant improvement of timing accuracy of the learned models.
منابع مشابه
A Hybrid Optimization Algorithm for Learning Deep Models
Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...
متن کاملAn algorithm for learning real-time automata
We describe an algorithm for learning simple timed automata, known as real-time automata. The transitions of real-time automata can have a temporal constraint on the time of occurrence of the current symbol relative to the previous symbol. The learning algorithm is similar to the redblue fringe state-merging algorithm for the problem of learning deterministic finite automata. In addition to sta...
متن کاملApplication of Stochastic Optimal Control, Game Theory and Information Fusion for Cyber Defense Modelling
The present paper addresses an effective cyber defense model by applying information fusion based game theoretical approaches. In the present paper, we are trying to improve previous models by applying stochastic optimal control and robust optimization techniques. Jump processes are applied to model different and complex situations in cyber games. Applying jump processes we propose some m...
متن کاملA Hybrid Optimization Algorithm for Learning Deep Models
Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...
متن کاملIncremental PDFA Learning for Conversational Agents
When finite-state machines are used for dialogue models of a conversational agent, learning algorithms which learn probabilistic finite-state automata with the state merging method are useful. However, these algorithms should learn the whole data every time the number of example dialogues increases. Therefore, the learning cost is large when we construct dialogue models gradually. We proposed a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017